

Reactions of Ethyl Diazoacetate with β-Methylfurans

Ernest Wenkert,* Haripada Khatuya,† and Phillip S. Klein

Department of Chemistry (0506), University of California-San Diego, La Jolla, CA 92093, USA

Received 20 January 1999; accepted 17 May 1999

Abstract: Reactions of β -methylfuran and 2,4-dimethylfuran with ethyl diazoacetate in the presence of $[Rh_2(OAc)_4]$ catalyst, followed by iodine-induced isomerization, yielded furan ring-unravelled products. The results are compared with those of α -methylfurans. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Furans; carbenes and carbenoids; cyclopropanation; diazo compounds.

An early intermediate on route of the $[Rh_2(OAc)_4]$ -catalyzed interaction between ethyl diazoacetate (EDA) and furan is rhodium complex 1, a substance capable of extruding rhodium and yielding the preponderant products (2 and 3). Since an early carbon-carbon bond is that formed between the carbenoid carbon and the furan α -carbon, furan α -substituents would be expected to decrease the rate of such bond formation. In accord with this concept, EDA reaction with α -methylfuran proceeds on the unsubstituted side of the furan nucleus vs. the methylated side in 19:1 ratio. It now became of interest to ascertain the site selectivity of a β -methyl group, leading to the following study of the reaction of β -methylfuran 2.3 and 2.4-dimethylfuran 4.

The dimethylated furan (4b) could be prepared by two means. (a) Condition modification of the condensation of chloroacetone with ethyl acetoacetate⁵ (dry HCl, -5 °C, 12 h; Et₃N, Et₂O, 0 °C, 52 h; 57 % yield) furnished furoate 5a, whose hydrolysis (refluxing aq. NaOH, 2 h; 84 % yield) led to acid 5b⁵ and decarboxylation⁶ of the latter produced 4b. (b) 2-Bromo-4-methylfuran (6a),⁷ prepared from ester 6b,⁸ was converted ('BuLi, Et₂O, -78 °C; MeI, -78 °C to r.t., 56 % yield) into 4b.⁹

Present Address: The R. W. Johnson PRI, 3535 General Atomics Court, Suite # 100, San Diego, CA 92121.

The reaction of β -methylfuran (4a) with EDA under $[Rh_2(OAc)_4]$ catalysis afforded a mixture of cyclopropane 7 and 1,4-diacyl-1,3-butadienes in 92 % of mass recovery. Treatment of the mixture with I_2 converted it into four aldehydoesters, - 8, 9a, $10a^{10}$ and 11a. Aldehydoesters 8a and 9a are the products of [Rh]=CHCO₂Et interaction with the furan on its unsubstituted side, whereas substances 10a and 11a are derived from action on the side of the substituent. The [8+9a]/[10a+11a] ratio proved to be in the range of 1.5:1 to 2:1, indicating low site selectivity in the 4a-EDA reaction.

a: R = H, $R' = CO_2Et$; **b:** $R = CO_2Et$, R' = H

 $[Rh_2(OAc)_4]$ -induced reaction of 2,4-dimethylfuran (4b) and EDA furnished ¹² ketoesters 12a and 12b (and traces of aldehydoesters 14a and 14b), whose I_2 treatment led to ketoesters 12a (20 % yield) and 13 (62 % yield). ¹³ Thus, in this case nearly exclusive site selectivity favoring the β -methyl side of the furan nucleus was exhibited.

a: R = H, $R' = CO_2Et$; b: $R = CO_2Et$, R' = H

The extraordinary difference of behavior of α - and β -methylfurans may have both steric and electronic justifications. In view of complex 1 being an early intermediate along the carbenoid-furan reaction route, its

formation in the presence of an α -methyl group constitutes a high-energy *ipso* attack, but in the presence of a β -methyl substitutent a lower energy *ortho* attack. Furthermore, in complex 1 an *ortho*-methyl group (cf. 15) would stabilize the furanyl positive charge, but only with the carbenoid interaction having taken place on the methylated side of the furan ring. In contrast, an α -methyl function (cf. 16) stabilizes the positive charge only if the carbenoid interacts on the opposite side of the furan ring.

References and Notes

- [1] Wenkert, E.; Guo, M.; Lavilla, R.; Porter, B.; Ramachandran, K.; Sheu, J.-H. J. Org. Chem. 1990, 55, 6203
- [2] Burness, D.M. Org. Synth. 1959, 39, 49.
- [3] For a reaction of 4a with an α-diazo-β-lactam see Matlin, S.A.; Chan, L.; Catherwood, B. J. Chem. Soc., Perkin Trans. 1, 1990, 89.
- [4] a) Ancerewicz, J.; Vogel, P. Helv. Chim. Acta 1996, 79, 1393. b) Reichstein, T.; Zschokke, H.; Georg, A. Helv. Chim. Acta 1931, 14, 1393.
- [5] Alexander, E.R.; Baldwin, S. J. Am. Chem. Soc., 1951, 73, 356.
- [6] Shepard, A.F.; Winslow, N.R.; Johnson, J.R.; J. Am. Chem. Soc. 1930, 52, 2083.
- [7] Knight, D.W.; Rustidge, D.C. J. Chem. Soc, Perkin Trans. 1, 1981, 679.
- [8] Grigg, R.; Knight, J.A.; Sargent, M.V. J. Chem. Soc. (C), 1966, 976.
- [9] NMR (300 MHz, CDCl₃) data:
 5a: ¹³C NMR δ 9.9 (4-CH₃), 14.2 (*C*H₃CH₂ and 2-CH₃), 59.7 (CH₂), 113.4 (C-4), 121.0 (C-3), 137.0 (C-5), 159.9 (C-2), 164.6 (C=O). 5b: ¹³C NMR δ 9.9 (4-CH₃), 14.6 (2-CH₃), 112.8 (C-4), 121.5 (C-3), 137.8 (C-5), 162.0 (C-2), 170.9 (C=O). 6b: ¹³C NMR δ 11.3 (CH₃), 51.5 (OMe), 116.7 (C-4), 126.3 (C-3), 133.4 (C-5), 152.0 (C-2), 158.6 (C=O). 5-Bromo-3-methyl-2-furoic acid: ¹³C NMR (DMSO-d₆) δ 10.6 (CH₃), 115.9 (C-4), 124.9 (C-3), 131.9 (C-5), 142.0 (C-2), 159.1 (C=O). 6a: ¹³C NMR δ 9.8 (CH₃), 113.6 (C-3), 121.6 (C-4), 122.9 (C-2), 140.9 (C-5). 4b: ¹³C NMR δ 9.6 (4-CH₃), 13.3 (2-CH₃), 108.2 (C-3), 120.6 (C-4), 137.2 (C-5), 152.0 (C-2).
- [10] a) Fleming, I.; Iqbal, J.; Krebs, E.-P. Tetrahedron 1983, 39, 841. b) Severin, Th.; Lerche, H. Chem. Ber. 1976, 109, 1171.
- [11] 7: ${}^{1}H$ NMR δ 0.99 (*d*, 1, *J* = 2.4 Hz, H-6), 1.26 (*t*, 3, *J* = 7.2 Hz, CH₃CH₂), 1.79 (*d*, 3, *J* = 0.9 Hz, CH₃), 2.65 (*dd*, 1, *J* = 2.4, 5.4 Hz, H-5), 4.12 (*q*, 2, *J* = 7.2 Hz, CH₂), 4.78 (*d*, 1, *J* = 5.4, H-1), 6.11 (br. *s*, 1, H-3). ${}^{13}C$ NMR δ 10.0 (CH₃), 13.8 (CH₃CH₂), 21.6 (C-6), 34.7 (C-5), 60.2 (CH₂), 66.8 (C-1), 116.2 (C-4), 141.0 (C-3), 172.7 (C=O). **8:** ${}^{1}H$ NMR δ 1.32 (*t*, 3, *J* = 7.1 Hz, CH₃CH₂), 1.95 (*d*, 3, *J* = 0.9 Hz, CH₃), 4.26 (*q*, 2, *J* = 7.1 Hz, CH₂), 6.26 (*d*, 1, *J* = 15.3 Hz, H-2), 6.90 (br. *d*, 1, *J* = 11.6 Hz, H-4), 7.68 (*dd*, 1, *J* = 11.6, 15.3 Hz, H-3), 9.50 (*s*, 1, H-6). **9a:** ${}^{1}H$ NMR δ 1.32 (*t*, 3, *J* = 7.1 Hz, CH₃CH₂), 1.93 (*s*, 3, CH₃), 4.25 (*q*, 2, *J* = 7.1 Hz, CH₂), 6.13 (*d*, 1, *J* = 15.0 Hz, H-2), 7.05 (*d*, 1, *J* = 12.4 Hz, H-4), 8.18 (*dd*, 1, *J* = 12.4, 15.0 Hz, H-3), 10.42 (*s*, 1, H-6). ${}^{13}C$ NMR δ 13.8 (CH₃CH₂), 16.4 (CH₃), 60.4 (CH₂), 126.8 (C-2), 135.2 (C-3), 140.5 (C-5), 140.9 (C-4), 165.6 (C-1), 189.5 (C-6). **9b:** ${}^{1}H$ NMR δ 1.33 (*t*, 3, *J* = 7.1 Hz, CH₃CH₂), 1.96 (*s*, 3, CH₃), 4.24 (*q*, 2, *J* = 7.1 Hz, CH₂), 5.98 (*d*, 1, *J* = 11.4 Hz, H-2), 7.55 (*t*, 1, *J* = 11.9 Hz, H-3),

- 8.24 (d, 1, J = 12.4, H-4), 10.39 (s, 1, H-6). ¹³C NMR δ 14.1 (CH_3CH_2), 17.0 (CH_3), 60.5 (CH_2), 120.3 (CH_2), 134.9 (CH_3), 137.8 (CH_3), 140.9 (CH_3), 165.4 (CH_3), 190.0 (CH_3), 190.0 (CH_3), 191.8 (CH_3), 191.8 (CH_3), 191.9 (C
- [12] Typical procedure: Reaction of 2,4-dimethylfuran with EDA.

 A solution of ethyl diazoacetate (0.83 g, 7.3 mmol) in 5 ml of dry CH₂Cl₂ was added slowly to a green solution of 2,4-dimethylfuran (1.4 g, 14.6 mmol) and [Rh₂(OAc)₄] (ca. 5-10 mg) in CH₂Cl₂ (20 ml) at r.t. over a 10-h period. It then was concentrated and filtered through a short Florisil column to remove the catalyst. The crude material was purified (SiO₂, 1-6% Et₂O-light petroleum ether) or taken up in CH₂Cl₂ (20 ml) and stirred at r.t. with a catalytic amount of I₂ (two crystals) for 12 h. The solution was washed sequentially with 10% Na₂S₂O₃ and brine, and then dried (Na₂SO₄). The products (13 and 12a) were separated by SiO₂ chromatography.
- [13] 12a: 1 H NMR δ 1.32 (t, 3, J = 7.1 Hz, CH₃CH₂), 2.02 (d, 3, J = 0.9 Hz, CH₃), 2.26 (s, 3, H-7), 4.24 (q, 2, J = 7.1 Hz, CH₂), 6.18 (d, 1, J = 16.1 Hz, H-2), 6.28 (br. s, 1, H-5), 8.40 (d, 1, J = 16.1 Hz, H-3). 13 C NMR δ 14.0 (CH₃CH₂), 20.2 (CH₃), 31.5 (C-7), 60.4 (CH₂), 124.1 (C-2), 130.3 (C-5), 140.5 (C-3), 144.7 (C-4), 166.2 (C-1); 197.9 (C-6). 12b: 1 H NMR δ 1.27 (t, 3, J = 7.1 Hz, CH₃CH₂), 2.09 (s, 3, CH₃), 2.19 (s, 3, H-7), 4.14 (q, 2, J = 7.1 Hz, CH₂), 5.85 (d, 1, J = 12.3 Hz, H-2), 6.16 (br. s, 1, H-5), 7.07 (d, 1, J = 12.3 Hz, H-3). 13 C NMR δ 13.8 (CH₃CH₂), 23.2 (CH₃), 30.3 (C-7), 59.9 (CH₂), 119.2 (C-2), 125.1 (C-5), 146.1 (C-3), 151.0 (C-4), 165.2 (C-1), 197.0 (C-6). 13: 1 H NMR δ 1.32 (t, 3, J = 7.1 Hz, CH₃CH₂), 2.23 (br. s, 3, CH₃), 2.28 (s, 3, H-7), 4.24 (q, 2, J = 7.1 Hz, CH₂), 6.26 (d, 1, J = 15.7 Hz, H-2), 6.39 (br. s, 1, H-5), 7.26 (d, 1, J = 15.7 Hz, H-3). 13 C NMR δ 13.5 (CH₃), 14.0 (CH₃CH₂), 31.8 (C-7), 60.5 (CH₂), 124.1 (C-2), 131.7 (C-5), 146.4 (C-4), 147.1 (C-3), 166.0 (C-1), 198.7 (C-6). 14a: 1 H NMR δ 1.24 (t, 3, J = 7.1 Hz, CH₃CH₂), 1.89 (d, 3, J = 1.2 Hz, 5-CH₃), 2.10 (br. s, 3, 3-CH₃), 4.12 (q, 2, J = 7.1 Hz, CH₂), 5.95 (t, 1, J = 1.2 Hz, H-2), 7.24 (br. s, 1, H-4), 9.82 (s, 1, H-6). 14b: 1 H NMR δ 1.24 (t, 3, J = 7.1 Hz, CH₃CH₂), 1.85 (d, 3, J = 0.9 Hz, 5-CH₃), 2.14 (d, 3, J = 0.9 Hz, 3-CH₃), 4.12 (q, 2, J = 7.1 Hz, CH₂), 5.90 (t, 1, J = 1.2 Hz, H-2), 7.65 (br. s, 1, H-4), 9.55 (s, 1, H-6).